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Some rigorous results on the dimension spectrum of expanding Markov maps 
of the interval are extended to Axiom A C 2 diffeomorphisms of a compact 
two-dimensional manifold. 
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1. I N T R O D U C T I O N  

Recently some new ideas and techniques have been proposed ~11) to charac- 
terize singularities of invariant measures ~ and attractors on which these 
measures are concentrated. The (possibly) multifractal nature of an attrac- 
tor f2 can be analyzed by partitioning it in a (large) number of atoms and 
looking at the atoms I such that #(I) ~ Ill a (tI] is the size of/) .  What can 
one say about the limit (i.e., for [II ~ 0 )  distribution of measures #(-)? 
Following a statistical mechanics procedure, one writes the partition 
function 

Zn(fl) = ~ #(1) 8 
I ~ partition of f2 

in 2 n atoms 

If the limit l i m , ~  (1/n)logZn(fl) exists and defines a regular function 
F(/~), then the distribution of the numbers #(I) is related to the Legendre 
transform of F(/~), f(c~)= infz [cq?-F(/~)]:  f ( e )  is precisely the Hausdorff 
dimension of the sets on which # has a power law singularity c~. 

In ref. 5 we showed how to prove some rigorous results on the 
existence, regularity, and "universality" of the function f(c0 for expanding 
Markov maps of the interval. In this paper I discuss the extension of these 
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results to Axiom A C 2 diffeomorphisms f of a compact two-dimensional 
manifold M. 

Suppose an invariant measure is given, supported on a compact f 
invariant set O ( f ) -  f2, where f is transitive (see Section 2). The main 
requisite for Axiom A is for f2 to be hyperbolic (see Section 2). Hyper- 
bolicity means dynamics that contracts in some directions, stretches in the 
others, to stretch and then (because of compactness) to fold objects. Orbits 
separate exponentially fast (along expanding directions) at an exponential 
rate which is uniform on g2. Thus, combined with compactness, the 
presence of positive exponents generates "chaos" and, even if the dynamics 
contracts the initial volume, makes possible motion that is "exponentially 
unstable" or "chaotic" on the attractor. (7'25) A natural measure for an 
Axiom A attractor (2 would be a measure which describes the statistics of 
orbits originating in a neighborhood of f2 and which is carried by the limit 
set of these orbits, i.e., by the attractor. Define the Sinai-Ruelle-Bowen 
measure # as the limit of the sequence of the images, via fn, of the 
Lebesgue measure concentrated on a sufficiently small neighborhood of 
~,~.(19,23) It is rather intuitive (25) that this measure can be disintegrated along 
unstable manifolds (18) by conditional probabilities absolutely continuous 
to Lebesgue, and most important is that this measure describes the 
asymptotic distribution of trajectories originating in a set of positive 
Lebesgue measure (23~ (see Section 2). Moreover, the "requirement" on con- 
ditional probabilities to be smooth has here, via symbolic dynamics, the 
natural equivalence in statistical mechanics for/~ to be the (unique) Gibbs 
state associated to the H61der continuous potential involving the Jacobian 
of unstable directions. (4'z4'27~ 

Nevertheless, # may be singular in the stable directions and in 
general (27) it is. 

Whenever the unstable manifold has codimension one, the possibly 
complicated structure of attractors can be investigated by one-dimensional 
techniques, since the decomposition theorem referred to  (19'21'25'27) shows 
that the "interesting part" (that is, the possible singularities) of the measure 
# can be read off on the transverse measure. This remark, together with a 
natural hypothesis of transitivity of the system (26) and the well-known 
distortion lemma, allows the extension of one-dimensional techniques used 
in ref. 5 to characterize singularities of measures carried by Axiom A 
attractors. 

I work on a space which is in fact a quotient space O/~ with respect 
to the (local) unstable foliation ~ and show the existence "uniformly" on s 
of 

F(f l)= lim (1/n)log ~ v~(I) ~ (1.1) 
n ~ oo I ~  { A n }  
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where v~(.) is the "transverse measure" and {A,,} is a suitable "uniform 
partition" of a local stable manifold. 

The regularity of F follows from the fact that F(/~) turns out to be the 
inverse function of another partition function G [i.e., G(/~, F(/?))=0],  
whose existence and regularity are well-known statistical mechanics 
results(13,14,24. 27) 

G(x, y ) =  lira (l/n) log ~ v~(A) x iAI y, Vx, y ~  ~ (1.2) 
,, ~ oo A s.t. A A ~ V~_ 01f~(R/~ 

where R (~ is a Markov partition of s (4) and A~ is the u-subrectangle 
associated to A with respect to R(~ (4) and [l~ means the "transverse 
volume" with respect to ~, that is, the length of A measured along the 
unstable foliations. 

The regularity of F(/~) enables one to apply large-deviation theorems 
to prove that its Legendre transform f(~)  is the Hausdorff dimension of the 
sets 

( sup)  log r e ( I x ) = @  
B-+~= x~f2  s.t. lim \ inf] l /xt~ ~ log Ilxl~ 

whose characterization is enough to capture the singularities (in the above 
described sense) of kL (see ref. 5). 

Similar results on f (e )  based entirely on the partition function G have 
been obtained by Rand (2~ and Gundlach. (1~ 

Sections 2 and 3 recall the properties of the Sinai-Ruelle-Bowen 
measure for the Axiom A attractors and prove some distortion lemmas. 
The proof of the existence of the limits (1.1) ("uniform free energy") and 
(1.2) ("dynamic free energy") occupies respectively Sections4 and5. 
Finally, Section 6 is devoted to the study of the relations between these two 
free energies. 

2. O N  A X I O M  A D I F F E O M O R P H I S M S  

Let f :  M --* M be a C 2-diffeomorphism of a compact two-dimensional 
Riemannian manifold M. Let f satisfy Axiom A [i.e., the nonwandering set 
f2(f)  is hyperbolic and it can be described as the closure of periodic 
points]. It is known that s decomposes in a finite union of closed, dis- 
joint, invariant sets f2 i ("basic sets") such that f lOi is topologically 
transitive. (26~ Hence it is rather natural to restrict our analysis to the case 
where f is transitive on s Recall that s has a hyperbolic structure if 
there is a continuous splitting of the tangent space in a direct sum 
T M  = E s | E u, invariant under D f ,  so that Df: E s --* E ~ is contracting and 
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Df: E"-..~E" is expanding. Moreover, let WU(f2), W'((2) be the global 
unstable and stable manifolds, and W"(x) and WS(x) be the global 
unstable and stable manifolds at x and W~(x) and W'/(x) the local stable 
and unstable local manifolds at x of size/.(4,18) I shall denote by 2s 
[2~-1(x)] the length of the image of the unitary vector e,(x) in E~ [es(x)] 
under the action of Df-l[Df] .  I denote by m the volume induced by the 
Riemannian metric on M. 

The Arnold toral automorphism (3) is a nice example which provides 
the simplest picture of what AxiomA looks like. Here M is the 
two-dimensional torus T2=R2/Z 2 and f is the linear automorphism 
(x, y) ~ (2x + y, x + y) mod Z 2, (x, y) ~ R 2. The Dfis everywhere equal to 
the matrix (2 11) ' which has eigenvalues 2 1 - 2 =  (3 +,,/-5)/2 and ,~2=)~ -1 
with eigenvectors vl = (1, 1 - 2 )  and v2= (1, 1 - ~  1). The contractive and 
expansive subspaces E~(x) and E~(x) do not depend on x; they are the 
one-dimensional spaces spanned by vl and v2. Because of linearity, the 
global stable and unstable manifolds are given by W"(x)=E ~ and 
W'(x)---E ~, and these straight lines emerging from the point x with irra- 
tional slope ( - 1  + x/~)/2 thus wind densely around the torus. The whole 
torus is (uniformly) hyperbolic, i.e., (definition) f is Anosov. Anosov dif- 
feomorphisms satisfy always Axiom A. Here it is easy to see that all points 
of T z with rational coordinates are periodic. I call this the conservative 
case: the whole torus may be considered as a (chaotic) attractor. It does 
not display a fractal structure. The Lebesgue measure is conserved 
(2122 = 1), as well as for any automorphism of T 2 (see ref. 1): he re /~=m 
and this is the trivial case. In general, for Anosov diffeomorphisms/~ ~ m 
(see Section 4), but I am most interested in dissipative cases, that is, 
/~(f2) = 1 and m((2)= 0. 

Let us come back to the general situation. Let (2 be an Axiom A 
attractor; then it is known that there exists a unique f-invariant, ergodic 
measure # such that the following holds. 

T h e o r e m  2.1 (23,27) 1. For m-almost every xe WS((2), 

n - - 1  

lim(1/n) ~ g(fi(x))-- fag dl~ (2.1) 
i ~ 0  

g any continuous function: M--* R. 

2. ~ can be disintegrated along the unstable foliations by conditional 
probabilities absolutely continuous with respect to the Lebesgue measure. 
Let ~ be (the partition of f2; see ref. 19) = L ) x ~  w~oc(x), and let Q(x) be 
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the element of ~ which contains x; then to any x e ~2 we associate Q(x) via 
the canonical projection 

H: ~ --, f~/~ 

x --, ~ ( x )  

Let A ~ ~2; then 

( .  
#(A) = )o/r t~c~(A c~ Q) d#~ (2.2) 

where (a) f ~ ) d # ~ i ~ ) ( z ) =  1; (b) if l is the Lebesgue measure on W ~, we 
have 

[. ~x~ ~ A p~(z)  dlx(z) 
Uc~(A ~ c~(x) ) = S~(~) p~(z) alL(z) 

px(Z)=I-Ii%l )~m(f- i (x)) / .~21(f- i (z))  is a c o n t i n u o u s  function of and 
ze  W"(x), VxeO. 

3. # maximizes the expression 

h u + f - l o g  ,~- l(x) d#(x) (2.3) 

where h is the entropy; this maximum is 0. ~1s'23) 
Moreover, recall the following results. 

T h e o r o m  2 .2 .  (4) Any basic set s for an Axiom A diffeomorphisrn, 
does have a Markov partition of (arbitrary) small diameter. 

L e m m a  2.3.  (2'~8) 

)~ l(x) = (e~(f(x)), Of(e,(x))) (2.4) 

is a H61der continuous function on EL 

Define 2-~ and 2 by 

0<,~ -1 < ~ 2 j l ( x ) ~ 2  < 1 
(2.5) 

0 <,~-1 <~ 22-~(x)-%< 2 < 1, Vxeg2 

I prove now a distortion lemma useful later. 

k e m m a  2.4. Let t, t 'es let Ls(t) be a small arc on a local stable 
manifold W~(t) and L,(t') the corresponding arc obtained by the projection 



928 Porzio 

7r along the unstable manifolds on WS(t'). Then there exists a positive 
constant c and an integer ~ which is the smallest integer such that 
]f-~(L~(t))I = O(1), such that Vq~<~, 

If q(Ls(t))] IL~(t)[ c ~ [Ls(t)~< ~<c (2.6) 
[Ls(t')[ [ f  -q(z~(t'))[ [Zs(t')[ 

Proof. Let q ,  t2, t], t~ be the boundary points of Ls(t), L~(t'). Let 
ds denote a coordinate on W ~ and if x j=fJ (xo )=fJ ( f -q ( t ) )  and yj= 
fJ(Yo) = f J ( f  q(z)), where z is a point in s sufficiently near to t, then 

t2 f f-q(t2) 
[Ls(t)l = ftl ds = ~f-q(,,) dx (Dfq(es(x)), Dfq(es(X)) > 1/2 

f f-q(t2) q -- i 
= dx 0 ~ )~s-l(xj) 

~f-q(tl) j=O 

__ ff-q(t2) q--1 2 s  I(Xj) 
-us  q(,,~ dxo [I 2sX(yj) 

j=o 271(Yy) 
(2.7) 

Using the H61der continuity of 2 71, we get 

qfll ~S I(Xj) q--1 
2 s l ( y j ~ - e x p  ~ flog 2~-l(f q+J(t))--log 2sl(f-q+J(r))] 

j=o  j=o  
q 1 

~< exp ~ c2 (q j)ct d(x, y)~ 
j=O 

(2.8) 

It follows that 

C -1 q 1 2s- 1 (Xj) 
j=O 2 s l ( y j )  ~< C (2.9) 

Hence 

q 1 [ t A t ) l  q - I  
C--1 U 2 s ' ( f  q+J('c))~ ~C [~ 2sl(f-q+J(r)) (2.10) 

j=O I f -q(Zs( t ) )[  j=o  

By applying the same estimates to Ls(t' ) and choosing the same point r, 
one gets the result. 
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3. T H E  P A R T I T I O N  F U N C T I O N  Z(13) 

Let R(~ {R(o ~ ..~R(~ R(d ~ } be a Markov partition ofs and let ~ be 
the partition 

~(o~ = U ( R(~ n w~'(x)) 
x ~ .Q 

Let W;o(y ) be the local stable manifold at y ~ s lo = max diam RI ~ Let 
WS(y, (o) . . . .  R~ )=W;o(Y)~Rl ~ Let {A,,} be a "uniform partmon of 
WS(y, RI ~ (i.e., a partition into 2 n atoms of the same length). Let leA,,,  
let At be the u-subrectangle of RI O) associated to L (4) Let H be the canoni- 
cal projection H: f2 ~ s Az=HAt. 

D e f i n i t i o n  3.1. Define the transverse measure vr of I with 
respect to the partition ~R(o~ a 

vce(o,(I ) _= #~R(o)(21) (3.1) 

where by the decomposition theorem (~) 

( ,  
#(A I) = Ja/r #%(~ i c~ ccR(o)) d#r 

= f& = ~/~R o) #%~~176 d~r176 

= f2~ d#%(~ 

= &~o,(3,) (3.2) 

I list now some useful properties of vc~0. 

I . emma  3.2. Let # be the Sinai-Ruelle-Bowen measure; suppose 
that there exists a constant c such that #(f(A))<...cp(A), for any 
measurable set A. We have (all constants will be denoted by the same 
letter c) the following results. 

1. Let R', R" be two Markov partitions of s Let I~  {A~}. Then 

c-%r ~< vcR,(I ) ~< cvcR,(I ) 

2. f - l ~  is a partition off2  and f 1~>~ [that is, Q(x)~cf-le(x)], 
f~ is a partition of Q, and f~ < 4. 
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3. By 2, the f invariance of/2, and the Markov property we have 
("quasi-invariance") 

c- lvr  1(I)) ~< re(I) <~ cvr 1(i)) 

Moreover, we have the following "distortion lemma" for the measure vr 

k e m m a  3.3. Let I c  J be small arcs on a local stable manifold, and 
let q be the smallest integer such that ]f-q(J)[ = O(1); then there exists a 
finite constant c such that 

c- 1 vr .< vr .< vr q(I)) (3.3) 
v r  "~ v s  ~ c vr q(J)) 

ProoL This is a simple consequence of the invariance of/2 and the 
distortion Lemma 2.4. Let At and As be the u-subrectangles associated to 
I and J, and I the Lebesgue measure on W ". Then 

l~(f q(A,)) 
/2(f q(Aj)) 

Also, 

fO/r /2c~R,o)(f -q(A I) N C CR(o)) d/2r ) 

~ a/r /2%lo~ ( f  -q( A s ) c~ c cR(o~) d/2 ~R(o ~ 

~< o(1) vr -q(l)) l ( f  -q(A/)) 
vr  q(J)) l ( f -q(As) )  

~< o(1) v~(f -q(I) )  l(A,) 
vg(f  q(J))l(A.1 ) 

/2(41) ~,~/~.,0,/2%,0~(~,~ %,0~) d/2~R~0~ 

~<o(1) re(I) /(At) 
vdj  ) I(Aj) 

Reverse inequalities are proven similarly, and by the invariance of the 
measure/2 we get the result. 

4. PROOF OF THE EXISTENCE OF F(13) 

Def in i t i on  4.1. Let f be a C 2 expanding Markov map of the inter- 
val, and/2 an f invariant measure. We say that a uniform partition {An} 
of the interval {i.e., a partition with atoms of uniform length 2 -" )  is 
(0,/)-regular if, letting for any IE {An}, q = qt be the smallest integer such 
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that fq(I) ~ ~?R r (25 (where R is a Markov partition), then Ifu(I)l > I and 
#(if(I))  > 0, with 0 and l positive numbers independent ofn. 

Proposition 4.2. (5) Let f be a C 2 expanding Markov map of the 
interval, and # an f invariant measure. Let {A, } be a partition of the inter- 
val with atoms of uniform length 2 ,l. Then, if n is large enough, there 
exists a (0,/)-regular partition {-4n} of the interval with atoms I such that 
III = O ( 1 ) 2  n. 

There are, of course, some consistency relations among 0, /, .~, n, and 
the size of the Markov partition to be satisfied; see ref. 5. 

Corollary 4.3. There exists a (0, l)-regular partition {A,} of 
WS(y, RI~ that is, letting q = q l  be the smallest integer such that 
f - q ( l )  n O~'RI ~ ~ ~ ,  then [f-q(I)[ > l and vr > 0, and rI[ = 
O(1) 2 n, n large enough. 

The requirement for {An} to be a regular partition is not only a 
technical one to avoid uncontrollable contributions to the partition func- 
tion at the thermodynamic limit, but it accounts for the structure of the 
support of the measure. (5) 

Theorem 4.4. (s) Let f be a C 2 expanding Markov map of the 
interval, {An} a uniform regular partition of the interval, n large enough, 
and # an f invariant measure such that if I and J are atoms of {An} in the 
same Markov rectangle; then 

Let 

#(I) #(f(I)) 
# ( J ) - # ( f ( J ) )  

Z~(fi)= ~ #(I) ~ 
l~{An} 

Then Vfl ~ R the following limit exists: 

lim ( l /n) log Zn(fl)=F(fl)  
t z ~  c o  

(4.1) 

The existence of the thermodynamic limit (4.1) is shown by an argument 
of subadditivity of the partition function (using the analogues on the inter- 
val of Lemmas 2.4 and 3.4), complicated by the presence of the boundaries 
of the Markov partition. 

I shall prove the following result. 
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T h e o r e m  4.5.  Let n be large enough; let 

Z=(fl)= ~ vG,(o,(I)~ (4.2) 
/~ {A,} 

where {A=} is a uniform regular partition of W'(y, RI~ Then the 

lim ( l /n) log Z=(~)= F(/~) (4.3) 

exists uniformly with respect to y ~ f2 and is independent of y. 

D e f i n i t i o n  4.6. I say that a partition {An} is of the order n if its 
atoms have a length o(1)2 =. I say that the partition functions Zn(~) and 
Z=+,(~) associated respectively to {A=} and {A=+,} are equivalent parti- 
tion functions if there exists a sequence e, with l im,~ ~ [(log c,)/n] = O, 
such that 

e y l Zn(~ ) <. Z= + ~(B ) <. cnZ.(~ ) 

I am now ready to prove the following result. 

k e m m a  4.7: R e d u c t i o n  t o  t h e  O n e - D i m e n s i o n a l  Case .  Let 
y,z~Rl~ let {A=}, n large enough, be a uniform regular partition of 
WS(RI ~ y). We construct a partition {A',,} of W=(RI ~ z) by projecting by 
7r along the local unstable manifolds the elements of {A=}. We compare the 
element IE {An} and 7r1=I' with the corresponding element of {A',,}. 
Observing that I and I '  do meet 0"R (~ under the action of f 1 at the same 
number of iterations q, by the distortion lemma and the transversality of 
the measure, we obtain that if {A=} is (0,/)-regular, then there exist con- 
stants Cl, C2, and c3 such that {A'=,} is (0',/ ')-regular with c111<,I'<~cll, 
0=0 ' ,  and l'/c2<~ [II/lI'[ <~e2/l, so that the partition {A'=,} is of order n' 
with 

n + log(l/c3) <~ n' <~ n + log(c3/l) 

Observing that vr vr since A l=z ] r ,  it follows that if we define 
ZY(/~) by 

ZX(fi) = ~ re(I)/~ (4.4) 
l e  {A~} 

parti t ion of WS( RI 0), y) 

(and similarly for z), then Z X and Z,~, are equivalent partition functions. 
We can therefore consider the class 

R(0) 
Z , '  (/~)= ~ v~(I) ~ (4.5) 

I ~ {An} parti t ion of 

WS(R} ~ y), any Y~ --i R(0) 
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Let now q=qo be the smallest integer q such that f-q(W~(Rl ~ y))c~ 
R~~ let ~ be the sub arc of WS(RI ~ y) such that f a ( ~ ) =  
f -q(WS(Rl ~ y)) c~ R~ ~ Observe that, letting 

Zf(fl) = ~ vr ~ 
I= =.~, le {An} 

partition of WS(RI ~ y) 

R ( O )  . . . . .  

Z ~  and Z , '  are equivalent par tmon functions. Now write Z ~  equivalent 

to Z~ I~ and consider the images of the atoms of Z ~  under f - q ,  q = qu, in 
R~ ~ These images are atoms of a partition function of the order of 

n + q log 1/2, which is equivalent to any partition Z~ }~ up to a distortion 
O(1) 21~ So we have obtained that there exist constants Co, c4 such 
that 

17R!0) l n ~  R (0) R (0) 
CO ~n~ p[P) <~ Zn' (fl) <~ CoZnJ+ p(fl) ( 4 . 6 )  

with log[2-q(l /c4)]  <<, p <~ log[2 q(c4/l)]. 
Summarizing, I have used the transversality of the measure to show 

that corresponding (i.e., by projection) intervals have the same measure, 
the distortion lemma to control their relative lengths, and transitivity to 
paste together partitions associated to different Markov rectangles. 

By Lemma 4.7, and using Lemmas 2.4 and 3.4 to prove subadditivity, 
as in Theorem 4.4, Theorem 4.5 follows. 

Remark. Free energy of absolutely continuous measures. 
In general fl ~ F(fl) for an absolutely continuous measure is not a 

trivial curve. However, we have the following result. 

T h e o r e m  4.8. (2'27) Let f : M ~ M  be a C 2 transitive Anosov dif- 
feomorphism. Let/~ be the Sinai-Ruelle-Bowen measure. Then generically 
# is singular with respect to the Lebesgue measure. If f leaves invariant a 
measure fi absolutely continuous with respect to the Lebesgue measure, 
then/~ = #  and # is absolutely equivalent to m. 

Corollary 4.9. If/~ ~ m, then F(fl) is trivial. 

5. S Y M B O L I C  D Y N A M I C S  

Let rn be the Lebesgue measure on M, and/~o the maximum entropy 
measure on {1 ..... d} z. Let R + = V~-o~fS(R (~ the Markov partition which 
s-refines R(~ (4~ Let A be a sub arc of WS(RI ~ y) (any yes such that its 
associated u-subrectangle A A (see ref. 4) is an element of R+. I define the 
"transverse volume" of A as lAP e -m(zl A). Starting with the volume m, one 



934 Porzio 

can construct via the symbolic dynamic a sequence of measures mo, defined 
by their conditional probabilities 

mo,(O~ ... . . . .  c~] col, Iil > n )  

mo~(03 ... . . . .  03, I coi, [i[ > n )  

A,,('c (co)) - Au(r, (co)) + A~(r, '(oh))- As(r, ' = exp i - i = 

. =  
0 

(5.1) 

where A , ( . ) =  - l og  )~-1(~(. )) and A,(. ) =  - l og  2210z(. )) are HSlder con- 
tinuous functions, ~: s{1,..., d } ~  f2 with 7r(co) = 0 j = _ ~  ~ + ~  r-JR(~ z is the 

shift on {1,...,d} Z, and c5=(...,c5_~ ..... e3,,o9~+~,...), 03=( .... 03 .... . . .  03,, 
co,+~ .... ) agree on the sites i with Iil >n.  

k e m m a  5.1. (27) Let A be a H61der continuous function on 
{1,..., d} Z. Then A(co)=const +~2,>0 0,(co ,,-.., co,), where ~ ,  are H61der 
continuous cylindric functions, and there exist c and k > 0  such that 
IO.I <~ ce-k". 

The above sequence then leads to a measure formally given by 

dmo= Z - l e x p  { ~ [A.(r,n(co))+ As(z n(co))]} d#o (5.2) 
n = 0  

where #o is the maximum entropy measure (27) and Z is a normalization 
factor. Recall the following result. 

I . emma  5.2. (27) Let A be a H61der continuous function on 
{1,..., d} z. Then A(co)=B(co+)-u(r ,co)+u(o)) ,  where B is a H61der con- 
tinuous function which depends only on the co j, j>~0, positive sites, 
denoted co +, and u is a H61der continuous function u(co)=~2,>o~7=0 ~ 
~.(< ico). 

The "transverse volume" can be then coded in m~-, the restriction to 
Z + of mo: 

[~oSU(~(co 1 dm~ = Z l exp " +)) 
n 

C E o ] ) x ~ exp ~ B,(r"(co-)) exp[u.(co)+Us(co)] d#o 
\ c o -  n o o  

= f ( c o ) Z - l e x p  ~ Bu(~'(co+)) d#o 
L n  = 0 

(5.3) 
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It follows that m~- _~ 2 +, the Gibbs measure on Z + with rapidly decreasing 
potential Tx(COx) = B~(co o ..... co~, 0, 0,...) - B~(co 0 ..... ~o,_ 1, 0, 0,...) if 
X =  [0,..., n] and 0 otherwise. By applying this coding to m(.) = r ' ][ ,  we 
obtain that Vx, y e N the following limit exists: 

lira ( l /n) log ~ v~(A) x IAI~=G(x, y) 
n ~ oo A s.t. A A ~  Rn+ 

(see refs. 14, 24, and 28; see also ref. 22). 

(5.4) 

6. R E L A T I O N S  B E T W E E N  S I N G U L A R I T I E S  A N D  
L I A P U N O V  S P E C T R A  

Let f : M ~ M  be a C 2 Axiom A diffeomorphism, let /~ be the 
Sinai-Ruelle-Bowen measure, and let v~ be the "transverse" measure 
defined in (3.1). Here I rephrase some known results in ergodic theory. 

Proposi t ion  6.1. 

c(/~,  F( /~))  = o 

Proof. See ref. 5. 

Define 2(y)=(~G/@)(1, y); it follows 
(Liapunov) exponent with respect to the 
(OG/3y)(1, 0) and 
"Liapunov spectrum. ''(6'9~ 

G(1, y) is the Legendre 

Coro l la ry  6.2. ~16) 

(6.1) 

that the characteristic 
stable direction is 22= 
transform of q~(A), the 

metric entropy of vr is h(v~)= (~?G/~?x)(1, 0) and c~(1)=(dF/dfl)(1) is the 
Hausdorff dimension of the measure re. 

Proposi t ion  6.3. 

(a) HD(#) = 1 + HD(v~). 

(b) h(~)=h(v~). 

Proof. We have that (p a.e. x) HD(p)=lim~o[logl~(B(x,s)) /  
logs] ,  where B(x, e)=  { y e M s . t .  d(x, y)~<s} (see ref. 29). According to 
Theorems 2.1 and 2.2, we have p(B(x, s)) = ~n/~ pqr e) c~ 
cr162 which gives c lv~(I(x,e))e<<.#((B(x,s))<~cvr 

h(v~) (6.2) 
HD(v~) = A2 

Proof. By differentiation from Proposition 6.1, recalling that the 
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where I(x, e)=B(x,  e)c~ W~(x), and c is a constant. This proves (a). 
Equality (b) follows by observing that h(tt) is the (metric) entropy of the 
endomorphism f:  M--* M and h(v) is the (metric) entropy of the quotient 
endomorphism f~ induced by f on the quotient space M/i; these two 
entropies are equal (see refs. 22 and 17). 

C o r o l l a r y  6 . 4 .  (8,12,17,29) 

HD(#) = 1 - - - -  (6.3) 
)t2 
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